

NATURAL CAPITAL RISK & OPPORTUNITIES

Dr. Richard Mattison CEO, Trucost Plc

WHAT'S THE PROBLEM?

Natural Capital underpins economic activity with companies dependent on resources such as water and raw materials

3bn more middle class

consumers by 2030

147% increase in

real commodity

prices since 2000

80% rise in steel

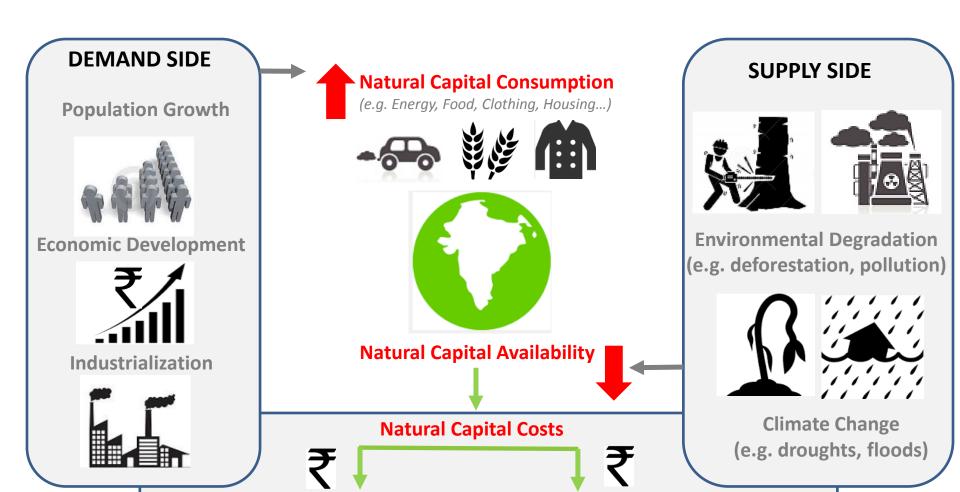
demand projected

2010-2030

\$1 trillion spent annually

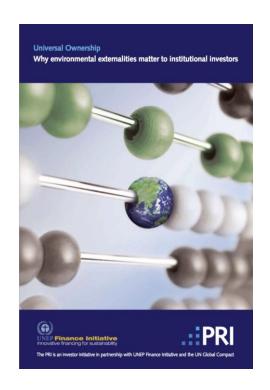
on resource subsidies

"Over the next quarter century, the rise of three billion more middle-class consumers will strain natural resources. The race is on to boost resource supplies, overhaul their management, and change the game with new technologies."


McKinsey, The Resource Revolution

Trucost data allows companies and investors to price risks relating to natural resource constraints and climate change

NATURAL CAPITAL DEMAND & SUPPLY SIDE PRESSURES



Environmental degradation in India amounts to USD 80 billion, or 5.7% of GDP in 2009 (World Bank).

The cost of air pollution to society in India in 2010 USD500bn per year in lives lost and ill health (UNEP 2014)

TRUCOST"

WHAT DOES THIS MEAN FOR THE FINANCIAL SECTOR?

Natural Capital Risk Exposure of the Financial Sector in Brazil

Natural Capital Risk Exposure of the Financial Sector in India

NATURAL CAPITAL AND COMPANIES

\$2.2tn

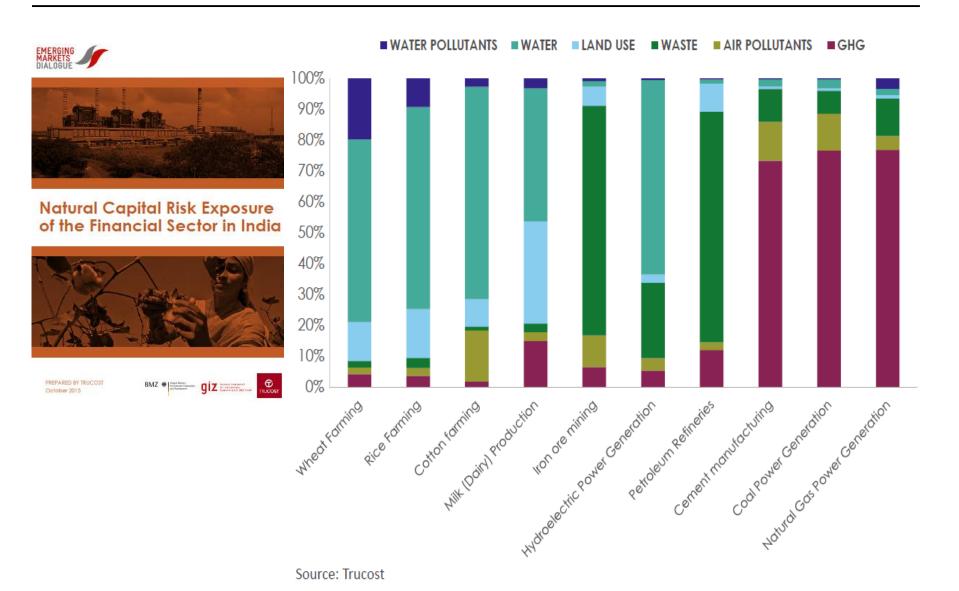
Environmental damage caused by world's largest 3,000 companies

>50%

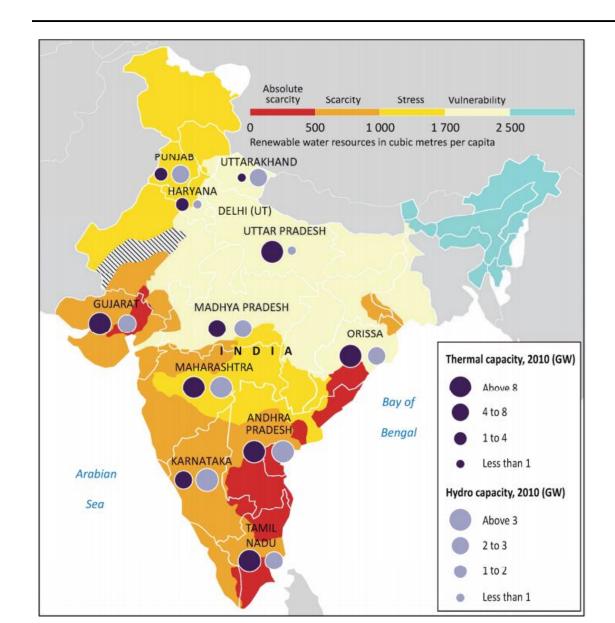
Proportion of company earnings that could be at risk from environmental costs

KEY FINDINGS - BRAZIL

Natural Capital Risk Exposure of the Financial Sector in Brazil



- Banks are most exposed through financing of Cattle ranching, fishing, food and beverages and agriculture
- Pension funds are most exposed through investments in food and beverage companies
- The natural capital risk exposure of financial institutions can vary significantly


DIFFERENT SECTORS FACE DIFFERENT RISKS

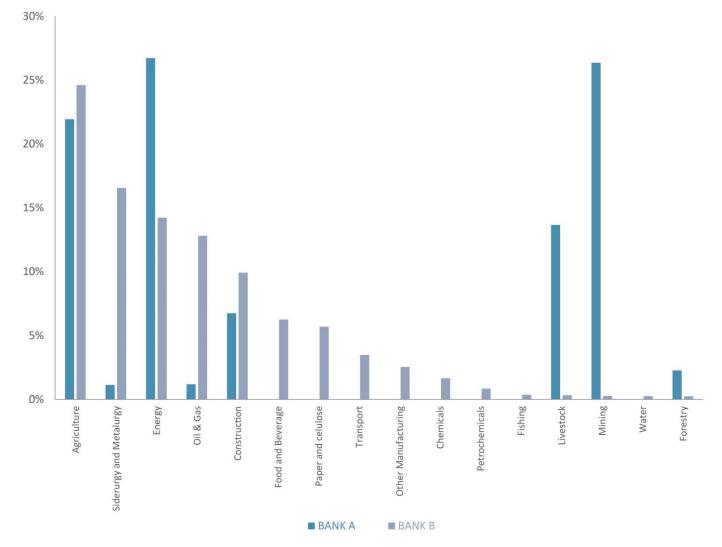
INDIA POWER & WATER – REGIONAL RISK

Almost half of India's coal-fired power generation is located in regions facing severe water stress (19% northern and 28% western regions).

Power generation accounts for 9% of commercial bank lending in India, driven by coal – 61% of the total installed domestic power generation capacity.

The NCI of 2.6x is driven by **GHG emissions and air pollution (89%** of total natural capital impacts)

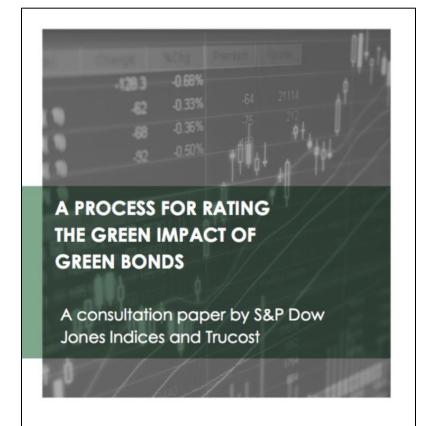
BRAZIL - CREDIT EXPOSURE OF TWO BANKS



Natural Capital Risk Exposure of the Financial Sector in Brazil

WHAT CAN INVESTORS DO? BUILD RESILIENCE

- TOP DOWN: QUANTIFY PORTFOLIO NATURAL CAPITAL EXPOSURE: Map portfolio to sectoral natural capital intensities to identify exposure hotspots
- BOTTOM UP: DEEP DIVE ON SECTOR & COMPANY SPECIFIC HOTSPOTS: Integrate natural capital risks and opportunities into valuation models
- **DUE DILIGENCE:** Acquire additional information for high risk sectors e.g. agriculture, infrastructure, power
- **CAPACITY BUILDING:** FIs should invest in natural capital training in order to build capacity for risk managers to identify and quantify exposure to natural capital risks. This should be beyond ESG to help them quantify NC value, impact and risk.
- **INTEGRATE:** Sector specific natural capital considerations should be included into credit analysis, particularly long duration loans & . Sensitivity analysis with shadow carbon pricing.
- MITIGATE/ACCOUNT MANAGEMENT: long term timeframes and relationships offers the opportunity to educate clients on sustainable resource management and provide financing for new projects e.g. energy efficiency, sustainable agriculture etc.
- **RURAL DEVELOPMENTS BANKS:** High exposure = high opportunity


WHAT CAN INVESTORS DO? CREATE OPPORTUNITIES

- **LENDING FOR SUSTAINABILITY IMPROVEMENTS**: e.g. Energy efficiency, Capex for implementation of sustainable cotton certification etc
- **LENDING TO SECTORS WHICH BENEFIT**: e.g. Renewable Energy, Low-Carbon Transport, Infrastructure and Sustainable Farming.
- PRODUCT INNOVATION: consider innovative financing instruments such as green bonds to find projects with a net positive impact
- GREEN BONDS: invest in green bonds

GREEN BONDS

Green bonds are defined by the Green Bond Principles as fixed-income instruments that fund projects promoting climate change mitigation or other environmental sustainability purposes.

Green bonds market experiencing exponential growth reaching \$43bn in 2015

Green bonds are being encouraged and even given preferential treatment by regulators across the globe, especially China.

THREE LEVELS OF GREEN BOND IMPACT ASSESSMENT

Portfolio

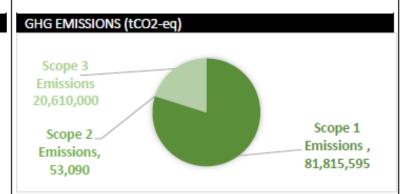
Issuer (company group level)

Project/ Bond

Key performance indicators

- -Portfolio emissions
- -Share of revenues/production from green/brown activities
- -Emissions savings per \$bn invested
- -Externality (\$) benefit per \$bn invested
- -Direct emissions (Scope 1)
- -Indirect emissions from suppliers (Scope 2 & 3 upstream)
- -Share of revenues/production from green/brown activities
- -Total Carbon Footprint (Direct + First Tier Indirect)
- -Env. Damage Costs relative to Revenue (Impact Ratio) etc.
- -Upstream project emissions
- (e.g. from the construction of a rail infrastructure by the company or suppliers)
- -Operational project emissions (e.g. from the maintenance of a wind farm)
- -Carbon Net Benefit Indicator
- -Carbon Avoided/Generated Emissions Ratio etc.

EXAMPLE OF A GB INVESTOR BRIEF


BOND PROFILE

20.0 0.5 2.2 0.02 4.9 -20.0 2014 -2.7 TY Lifetime -40.0 -60.0 TY: Typical Year / Green: Avoided / Red: Generated

KEY DISCLOSURE ITEMS	Source
Aggregated output data	AR
Aggregated avoided emissions	AR*
Output per project	AR*
Revenues per project	TC
Costs per project	TC
Baselines per project	TC
Project Types & Descriptions	AR
Project Locations	AR
Project Start and End Dates	AR
Expected Lifetime per project	TC
DISCLOSURE SCORE	7/10

3.3%
-1,929 tCO2-e/
m. EUR invested
14 tCO2-e/m. EUR

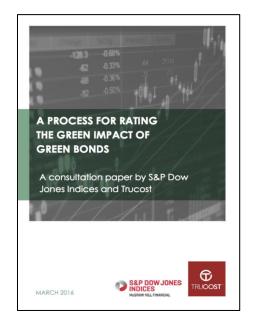
ISSUER PERFORMANCE (LY)

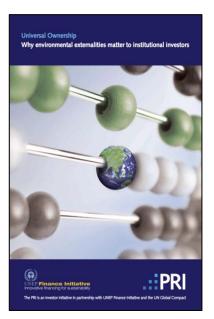
TOP 5 IMPACTS	CODE	QUANT	UNIT
Nuclear Waste to Land	ENV*	1,304	tonnes
Direct Water Withdrawal	ENV*	500	m. m3
SO2 to Air	ENV	134,000	tonnes
PM to Air	ENV*	9,848	tonnes
N0x to Air	ENV	171,700	tonnes

EXPOSURE TO ENVIRONMENTAL DAMAGE COSTS		
Climate	High	
Pollutants	High	
Natural Resources Use	Medium	

PEER COMPARISON	Α	В	C	D
% Absolute Disclosure	51%	56%	52%	50%
Impact Ratio	10.9%	7.9%	6%	34.1%
% Revenues from	10-	10-	0-5%	0-5%
Green Segments	25%	25%		
Sc 1&2 Intensity	1083	1392	1009	7028
trees term	1	I	I	I

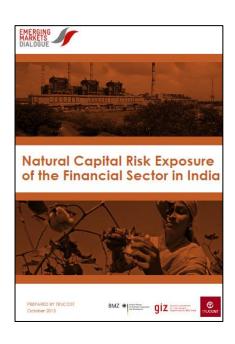
PORTFOLIO IMPACT




Climate Investments Portfolios save x tonnes carbon per \$mn invested

	Your Investments	Per project carbon savings	Carbon savings attributed to your investment	Carbon savings attributed to your portfolio
	Project 1: Solar Power Station A utility scale solar PV power plant.	Carbon Savings: 800,000 tonnes pa	Carbon Savings: X tonnes per \$mn	
行	Project 2: Wind Farm Largest single stage wind farm in the southern hemisphere.	Carbon Savings: 700,000 tonnes pa	Carbon Savings: X tonnes per \$mn	x tonnes per \$mn invested
Projects 3,4,5	Project 3,4,5 etc xxxx	Carbon Savings: X tonnes pa	Carbon Savings: X tonnes per \$mn	

QUESTIONS?



(

TRUCOST

Dr Richard Mattison FRSA
CEO
Trucost Plc

richard.mattison@trucost.com
@richmattison

https://uk.linkedin.com/in/richardmattison